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The Likelihood Principle and
the Reliability of Experiments

Andrew Backe't
University of Pittsburgh

The likelihood principle of Bayesian statistics implies that information about the stop-
ping rule used to collect evidence does not enter into the statistical analysis. This con-
sequence confers an apparent advantage on Bayesian statistics over frequentist statis-
tics. In the present paper, I argue that information about the stopping rule is
nevertheless of value for an assessment of the reliability of the experiment, which is a
pre-experimental measure of how well a contemplated procedure is expected to discrim-
inate between hypotheses. I show that, when reliability assessments enter into inquiries,
some stopping rules prescribing optional stopping are unacceptable to both Bayesians
and frequentists.

1. Introduction. According to Bayes’s theorem, the relevant informa-
tion from an experiment is contained in the likelihood function P(x|O).
This function summarizes the probability of the experimental evidence
x occurring under each hypothesis about an unknown parameter value
O. Summarizing evidence in this way entails that, if any two instances
of evidence yield likelihood functions which are the same apart from
some constant factor, then the inferences drawn from the experiments
should be the same. Stated formally, if P(x|©) = cP(x'|O), where c is
some positive constant and x and x’ denote instances of evidence from
different experiments investigating the same hypotheses about O, then
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the two instances of evidence have identical evidential import. This
implication is known as the likelihood principle.!

A corollary of the likelihood principle is that details about some
aspects of the experiment do not enter into the statistical analysis of
the evidence. Particularly, rules about when the collection of evidence
should stop are rendered irrelevant to the analysis. This corollary has
been cited as an advantage of Bayesian statistical analysis over fre-
quentist statistical analysis, since the latter summarizes evidence
through significance levels, which are influenced by information about
the stopping rule. My main objective in the following sections of this
paper is to show that this implication of the likelihood principle is
limited by another concern arising in experimental inquiry. After pro-
viding a detailed description of the likelihood principle’s consequences
for stopping rules, I maintain that a major concern in any experimental
inquiry is the reliability of one’s experiment. In the restricted sense used
in this paper, reliability indicates how well an experiment can distin-
guish a true hypothesis from among alternatives. I argue that reliability
assessments will limit Bayesians’ choices of experimental procedures
and thereby eliminate extreme stopping rules which are supposed to
confer an advantage on Bayesian statistical analysis.

2. The Likelihood Principle and Stopping Rules. An implication of the
likelihood principle is that it renders irrelevant certain aspects about
the experimental procedure used to collect the evidence. This conse-
quence is best understood when evaluating stopping rules. Edwards,
Lindman, and Savage note:

The likelihood principle emphasized in Bayesian statistics implies,
among other things, that the rules governing when data collection
stops are irrelevant to data interpretation. It is entirely appropriate
to collect data until a point has been proven or disproven, or until
the data collector runs out of time, money, or patience. (1963, 193)

To see the full import of the likelihood principle for stopping rules,
consider the following illustration, which is oversimplified from actual
practice in order to highlight the theoretical point. Suppose that a re-
searcher is conducting a binomial experiment to investigate whether a
new drug is better than a placebo. In the experiment, each trial is a
comparative recovery rate on a pair of subjects. Each trial is indepen-

1. See Berger and Wolpert 1984 and Birnbaum 1962 for comprehensive discussions of
the likelihood principle. The principle also has been discussed in the work of Edwards,
Lindman, and Savage (1963, 237-238), Hacking (1965, 106-109), Mayo (1996, 337-
359), and Savage (1962, 17-18), among others.
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dent, given the treatment effects, and takes the value of “0” (“unfa-
vorable” to the new drug) or “1” (“favorable” to the new drug). The
experiment tests a set of hypotheses H, and H, regarding the value of
the parameter O, which indicates the true probability of a “favorable”
outcome. Specifically, the experiment tests the hypothesis H,: 6 = 6,
= Sand H;: © = O, = t, where t is some value greater than .5. The
researcher’s prior probability distribution over the two hypotheses is
uniform (i.e., P(H,) = P(H,) = .5).

Suppose that the researcher starts conducting trials and determines
the likelihood function after each trial. In the present illustration, the
likelihood function is related to the likelihood ratio P(x|O,)/P(x|6,).
Suppose specifically that the researcher intends to stop the experiment
only when P(x|6,) exceeds P(x|O,) by the critical ratio A, at which point
the researcher will make a terminal decision to accept H, and report
its posterior probability. Otherwise, the researcher will continue to con-
duct trials. If the researcher obtains the desired critical ratio after, say,
50 trials, at which point 40 “favorable” outcomes have been observed,
then it should make no difference to the interpretation of the result to
know that it came from a sequential arrangement that stopped once
the researcher observed desirable evidence. The import of the evidence
from the sequential design is the same as it would have been had the
researcher intended to conduct a fixed-sample-size experiment of 50
trials and observed 40 “favorable” outcomes. The respective likelihood
functions of the instances of evidence from the sequential experiment
and the fixed-sample-size experiment would be constant multiples of
each other, which would be reflected in identical likelihood ratios (see
Savage 1962, 72-73). Consequently, information about the stopping
rule is of no inferential value.

In contrast to Bayesian statistical analysis, frequentist statistical
analysis does not entail this consequence. Frequentist analysis rests
primarily on the Neyman and Pearson (1933) theory of hypothesis
testing. What researchers seek from an application of a Neyman-
Pearson test is the probability that an error has been committed once
a particular hypothesis has been accepted. In a choice between two
hypotheses H, and H, about O with evidence x, a researcher must
consider two possible errors: either a) erroneously concluding that H,
is true or b) erroneously concluding that H, is true. The probability of
the former error is denoted « and the latter . Any two experiments
yielding evidence corresponding to identical o and f§ probabilities will
have the same evidential import.

Error probabilities will be influenced by the stopping rule. Suppose
that a researcher applying a Neyman-Pearson test attempts to establish
the truth of H, (i.e., reject H,) by sampling until obtaining evidence
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corresponding to an a level, also referred to as the “significance” level,
of .05. Under this circumstance, the o level calculated for a fixed-
sample-size test will not be appropriate for evaluating the evidence.
Because the researcher is continually looking for a “significant” result,
there will be a higher probability of finding one purely by chance than
if the test were performed merely once, at the final stage of the exper-
iment, as in a fixed-sample-size experiment. In fact, Anscombe (1954,
92-93) has shown that, with probability one, a significant result will
occur if the researcher continues to sample and apply a fixed-sample-
size test. Thus, if the sequential properties of a stopping rule are
ignored, persisting in the rule will permit a frequentist to acquire evi-
dence that leads to the rejection of H, at any significance level. Such
evidence is therefore not really indicative of the truth of the alternative
hypothesis.

To compensate for this problem of reasoning to a foregone conclu-
sion, frequentist methods have been developed that adjust the a level
according to the number of times a test is applied while evidence is
accumulating. Armitage (1975, 27-28) has outlined sequential methods
for this purpose. He notes that, to calculate the error probability of
rejecting H, when a test is applied after each trial, the researcher must
determine the probability, given the truth of H,, that a significant result
will occur on or before the given trial. This “overall” significance level
will be larger than the nominal significance level of the fixed-sample-
size experiment, and, as the sample size increases, the overall proba-
bility will become very large and approach one.

3. Reliable Experiments. The preceding discussion highlights a funda-
mental difference between Bayesian statistical analysis and frequentist
statistical analysis. Knowing that an instance of evidence (consisting,
for example, of 40 “favorable” outcomes in 50 trials) was collected
using a rule prescribing optional stopping rather than fixed stopping
will not influence a Bayesian inference, but will influence a frequentist
inference. This difference between the two statistical approaches ob-
tains even if the optional stopping rule dictates that the collection of
evidence terminate only when and if evidence favorable to one partic-
ular hypothesis, such as H, is observed.

Savage (1962) has cited this difference between the two approaches
as a reason for using likelihood functions rather than significance levels
to summarize evidence. He remarks:

The likelihood principle . . . affirms that the experimenter’s inten-
tion to persist does not change the import of his experience. The
true moral of the facts about optional stopping is that significance
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level is not really a good guide to ‘level of significance’ in the sense
of ‘degree of import’, for the degree of import does depend on the
likelihood alone. . . . (1962, 18)

The apparent advantage of the likelihood principle is that it gener-
ally precludes a Bayesian from reasoning to a foregone conclusion. Sav-
age (1962, 72-73) and Kerridge (1963, 1109) have demonstrated that,
unlike a frequentist, a Bayesian conducting an experiment that will only
stop with evidence favorable to one hypothesis does not have to worry
about justifying a false conclusion, since, for the Bayesian, the collec-
tion of evidence might not terminate. Kadane, Schervish, and Seiden-
feld (1996, 1229) recently have provided a general formula for deter-
mining the positive probability of non-termination of a Bayesian
sequential stopping rule similar to that outlined above. Where p is the
“prior” probability of H, and g is its “‘posterior” probability, the bound
for the conditional probability of terminating an experiment when H,
is false is no more than p(1 — ¢)/¢g(1 — p). This formula demonstrates
that a Bayesian cannot reject a true hypothesis with certainty.?

Although the result of non-termination appears to confer an advan-
tage on Bayesian statistics, the kind of stopping rule to which the result
has been applied—namely, a rule that can never indicate significant
evidence for H,—is nevertheless problematic. If a researcher has infor-
mation that a particular hypothesis cannot be accepted in an experi-
ment, then such information should enter into the inquiry at some
point. One way that the information should enter is in an assessment
of the reliability of the experiment. In the restricted sense used here, a
reliable experiment is one that can indicate the true hypothesis from
among the set of alternatives. An experiment that permits either H, or
H, to be accepted is more reliable than one that merely permits a par-
ticular hypothesis, such as H,, to be accepted.

A Bayesian researcher interested in successfully identifying the true
hypothesis from among a group of alternatives should perform a pre-
experimental evaluation of the reliability of the experiment used to
collect the evidence. In particular, the Bayesian should choose a stop-
ping rule that will permit an hypothesis to be accepted if that hypothesis
is actually true.

To see how a stopping rule can be ill-suited to this goal and, hence,
unreliable, consider the following illustration. Suppose that a re-
searcher desires to conduct a binomial experiment with independent
trials testing H,: © = 6O, = .5 against H;: O = O, = t, where t is some

2. This result holds under restricted conditions, particularly when probability is count-
ably additive as opposed to finitely additive.
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value greater than .5. Assume that the researcher’s prior probability
distribution over the two hypotheses is uniform (i.e., P(H,) = P(H,)
= .5). Consider two different stopping rules that the researcher might
use. The first stopping rule, E, is a sequential rule that attempts to
establish the truth of hypothesis H,. This rule is similar to that consid-
ered in section two above. The researcher intends to stop the experi-
ment only when, and if, P(x|6,) exceeds P(x|6,) by the critical ratio A,
at which point the researcher will make a terminal decision to accept
H, and report its posterior probability.

The other stopping rule, E’, is also a sequential procedure. It pre-
scribes the following:

(1) If P(x|©)IP(x|6,) = A, then make a terminal decision to accept
H, and report its posterior probability.

(2) If P(x|O)IP(x]6,) = v, then make a terminal decision to accept
H, and report its posterior probability.

(3) If neither (1) nor (2) obtain, continue sampling.

Unlike procedure E, this procedure permits an assessment of the truth
of H, as well as H,. Furthermore, with probability one, the procedure
will terminate (see Wald 1947, 37-40).

Suppose that the researcher begins collecting evidence and that, af-
ter, say, the 50th trial, observes a likelihood ratio of y. How this evi-
dence is interpreted will depend upon which stopping rule the re-
searcher adopted at the start of the experiment. If the researcher
adopted rule E, then the inference at the 50th trial will be to continue
sampling. If, however, the researcher adopted rule E’, then the infer-
ence at the 50th trial will be to accept H, and report its posterior prob-
ability. The two stopping rules yield different results even though the
evidence collected by the 50th trial is the same.

In this illustration, rule E is unreliable. The rule will never permit
the researcher to stop the experiment with evidence favorable to H,. In
fact, at a particular trial n, the researcher may observe evidence that
has a likelihood ratio extremely favorable to H,, and the researcher
may continue to observe such evidence favorable to H,, as the experi-
ment continues, but such evidence cannot be used to make a terminal
decision. The broader implication here is that the researcher has no
guarantee that the experiment will ever stop. Kadane, Schervish, and
Seidenfeld’s (1996, 1229) formula for determining the positive proba-
bility of non-termination of an experiment can be used to show the
shortcoming of rule E. If the researcher carrying out rule E requires
the critical ratio y to be such that g = .99, then (given p = .5) the
probability of terminating the experiment when H, is false will not
exceed .01. Any attempt to increase the probability of termination will
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be offset by an increased probability of accepting H, when H, is ac-
tually true.

The practical consequences of adopting rule E are quite severe. Sup-
pose that, during the course of a career in which different experimental
processes are investigated, a researcher expects H, to be true approxi-
mately 50% of the time. If the researcher continually applies rule E,
then approximately half of the experiments will either yield no conclu-
sion at all or lead the researcher to accept H, when in fact H, is true.
Moreover, if there is any cost at all to experimentation, then the ex-
pected costs of adopting rule E will be boundless.?

The problems just cited are not restricted to stopping rules in Bayes-
ian sequential experiments. A Neyman-Pearson experiment that per-
mits a researcher only to accept H, will also be unreliable. The adjust-
ment of the o probability for such a procedure, as Armitage (1975,
27-28) prescribes, does not avoid the fact that the procedure will never
permit the researcher to accept H,. A more reliable experiment would
be Wald’s (1947, 37-44) sequential probability ratio plan. This plan
incorporates error probabilities, but it also permits hypothesis H, to
be accepted and, hence, does not require the excessive adjustments of
« probabilities as does Armitage’s method.

4. Conclusion. According to Bayesian inference, the import of evidence
from an experiment depends only on the likelihood function deter-
mined by the evidence observed. Some features of the experiment, such
as the stopping rule, are of no inferential value. This consequence per-
tains to the post-experimental import of the evidence. I have argued in
the present paper that researchers should also be concerned with the
pre-experimental measure of the reliability of an experiment. A measure
of reliability indicates how good an experiment is at distinguishing the
true hypothesis. Such information is of value to Bayesian statistical
inquiry as well as frequentist statistical inquiry. Consequently, both a
Bayesian and a frequentist will refrain from using stopping rules that
are sometimes presented to show a particular advantage of Bayesian
statistical analysis over frequentist statistical analysis. Nonetheless,
there remain serious practical cases where the dispute over stopping
rules remains a live issue, such as in inverse sampling.
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